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TECHNIQUE FOR SYNTHESIS OF CONSTANT LINEAR DYNAMICAL SYSTEMS 

WITH A RANG-RANG  CONTROLLER 

By J e r r o l d  H. Suddath  and  Terrance M. Carney 

SUMMARY 

A theore t ica l   s tudy  was made t o  determine  the  ut i l i ty   of  a technique  for 
the  synthesis  of constant  l inear  dynaaical  systems  with a bang-bang cont ro l le r .  
The technique employs l inear   swi tch ing   log ic  and the premise t h a t  the use of 
time-dependent  gains  eliminates  endpoints.  Conditions  for  asymptotic  stability 
were obtained from consideration of  Liapunov functions.  

A s  p a r t  of the  investigation,  the  technique w a s  appl ied   in  an  analog com- 
puter  simulation  of  an  idealized  att i tude-control  system  for  spinning  space 
vehicles.  The system w a s  idea l ized   in   the   sense  that  the  equations of motion 
were l inear ized  and time  lags  in  control-system components  were neglected. 
The analog  simulation  demonstrated  the  stabil i ty and f l e x i b i l i t y  of the  closed- 
loop  control  logic  under a var ie ty  of conditions, and no endpoints were 
encountered. 

INTRODUCTION 

I n   t h e  last  few years  the  theory  of  optimal  control  processes has received 
much at tent ion.   (For  example, see   re fs .  1 t o  10.) Much of t h i s   a t t e n t i o n  has 
been  focused on the  problem  of  time  optimal  control of l i n e a r  dynamical  systems 
wi th  l imited  control   inputs .  The theo re t i ca l   so lu t ion  of t h i s  problem i s  
well-known  and  example appl icat ions of the  theory have  appeared i n   t h e   l i t e r a -  
t u r e .  (For example, see   re fs .  11 and 12 . )  However, t h e   p r a c t i c a l  problems of 
mechanizing  closed-loop  time  optimal  systems  have  not  been  solved.  This  dif- 
f i c u l t y  stems  from the   f ac t   t ha t   t he   t ime   op t ima l   con t ro l   l og ic   r equ i r e s  a 
copplete knowledge o f   t he   s t a t e   o f   t he  system, and a r e l a t ive ly   soph i s t i ca t ed  
computer in   the   cont ro l   loop .  With present-day computing  equipment, these  
requi rements   ru le   ou t   the   feas ib i l i ty  of t ime  opt imal   control   in  some applica- 
t i o n s   t o  small spacecraft .  It may be  impractical, o r  perhaps  impossible, t o  
determine  completely  the  state  of  the system;  moreover, l imi ta t ions  on weight, 
space, r e l i a b i l i t y ,  complexity,  and so for th ,  may prdhibit  the  use  of  sophis- 
t i c a t e d  computers in  the  control  loop.  Therefore,  it seems reasonable t o  
invest igate   control   logics  which y ie ld   cont ro l  l a w s  with  the same a n a l y t i c a l  
s t ruc ture  as the  optimal  control,   but which appear t o  be r e l a t i v e l y   e a s y   t o  
mechanize. 



The purpose  of t h i s   i n v e s t i g a t i o n  was to   s tudy   t he   app l i cab i l i t y  of l i n e a r  
swi t ch ing   l og ic   t o   t he   r egu la to r  problem  where the   p l an t  i s  a linear  dynamical 
system  with  constant   coeff ic ients .   Since  constant   gains   in   the  control   loop 
lead   to   endpoin ts  (see r e f .  l3), a t t en t ion  w a s  centered on the  use  of  time- 
dependent  gains. 

The ana lys i s  was conducted  by  determining  conditions  for  asymptotic sta- 
b i l i t y  from properties  of Liapunov functions.  Once these  condi t ions were 
developed, a heuris t ic   synthesis   technique was postulated.   This  technique w a s  
successfully  applied  in  an  analog  simulation of   an  ideal ized  a t t i tude  control  
system for  spinning  space  vehicles.  The system was i d e a l i z e d   i n   t h a t   t h e  equa- 
t i ons  of  motion  were l inear ized  and time lags i n  control-system components were 
neglected.   Results  of  the  analog  simulation are inc luded   in   the   repor t .  

SYMBOLS 

n x n matrix  of  constant  coefficients  determined  by dynamics of 
system 

constant  n-vector  determined  by dynamics  of  system 

cons tan t   pos i t ive   def in i te  n x n matrix,  defined as solut ion 
of  equation (7)  

p a r t i c u l a r  form of optimum gain  vector   def ined by equation (6 )  

n-dimensional  gain  vector 

cons tan t   pos i t ive   def in i te  n X n matrix  used  in  performance 
index  (eq. ( 4 ) )  

u n i t   v e c t o r   i n   d i r e c t i o n  of f ree   gyro  spin  axis  

moments of i n e r t i a  of  vehicle  about  principal  vehicle X-, Y-, 
and Z-axes, respectively,   slug-ft2 

t ransverse moment of i n e r t i a  when Iy = Iz, s lug- f t2  

uni t   vec tors  along pr inc ipa l  X-, Y-, and  Z-axes, respect ively 

m a x i m u m  avai lable   control   accelerat ion,   radians/sec2 

external   p i tching and  yawing moments, respec t ive ly ,   in   p r inc ipa l  
vehicle-axis  coordinate system, f t - l b  

neighborhood of point  b with  radius p 
-+ 
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in teger  

nu l l   vec tor  

angular v e l o c i t i e s  about  principal X-; Y-, and  Z-axes, respectively,  
radians/sec 

posi t ive  constant   spin  ra te  of vehicle  about  X-axis,  radians/sec 

Laplace  transform  variable 

time,  sec 

scalar  control  parameter 

p a r t i c u l a r  form of  optimal  control l a w  (see  eqs.  ( 5 )  and ( 6 ) )  

Liapunov function  defined by equation (8) 

principal  vehicle-axis  coordinates 

n-dimensional s t a t e   vec to r  

xi2 

F = l  

gimbal  angles  of  free gyro measured r e l a t ive   t o   sp inn ing   p r inc ipa l  
body axes,  radians 

eigenvalue of matrix,  defined by equation (Alg)  

radius  of  neighborhood,  defined by equation (15) 

vector   angular   veloci ty  of X-, Y-, and  Z-axis  system,  radians/sec 

switching  function 

algebraic   s ign of term  within  bracket 

frequency  defined by equation (A3) ,  radians/sec 

determinant  of  quantity i n  parentheses 

Euclidean norm 

3 



111 square  matrix 

I 1  absolute  expression 

Subscript o deno tes   i n i t i a l   va lue .  An integer  subscript   denotes a com- 
ponent  of a vector.  Dots  over  symbols  denote  differentiation  with  respect  to 
time. An arrow  above a symbol denotes a vector.  An as te r i sk   denotes   the  
transpose of a matrix  and  of a vector.  

ANALYSIS 

Problem  Statement 

The problem  considered i n   t h i s   i n v e s t i g a t i o n  i s  s t a t ed  as follows.  Let a 
system  be  described by a se t   o f  n d i f fe ren t ia l   equa t ions  which  can  be wr i t ten  
in   vector-matr ix  form as 

L J  

where x i s  the  n-dimensional  state  vector,  [A] i s  a constant n x n matrix, -3 

+ a i s  a constant  n-vector,  and u, the  scalar   control   parameter ,  i s  a funct ion 
of x and t .  For a bang-bang control  system,  the  control  function u has 
the  form 

-+ 

u = sgnL(Z, t)] 

where  sgn b(?,tn means the  a lgebraic   s ign  of  &t )  so t h a t  u i s  

r e s t r i c t e d   t o   v a l u e s  of k1. The funct ion cr(?,t) i s  genera l ly   ca l led   the  
switching  function. 

Assume that   the   system i s  completely  controllable  in  the  sense  of  refer-  
ence 7 and t h a t  x. # 0, and f ind  a u(2,t)   (provided one e x i s t s )  which makes 

2(t> + o as t -+m. 

-+ 

Formulation  of  Solution 

Method of  formulation.- The solution  presented  herein i s  formulated  by 
f irst  examining some of t he   p rope r t i e s  of a l inear   control   system and then con- 
s ider ing  how t h e   l i n e a r   c o n t r o l  l a w  might  be  modified t o  produce a s t a b l e  non- 
l i n e a r  (bang-bang)  control l a w .  The condi t ions   for   s tab i l i ty   a re   der ived  from 
considerations  of  Liapunov  functions. 
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A l i nea r   con t ro l  law.-  A l i nea r   con t ro l  l a w  i s  t h e   s o l u t i o n   t o   t h e   f o l -  
lowing  problem.  Given the  completely  controllable  system 

2 = [A]? + u z  

f i n d   t h e   c o n t r o l  l a w ,  say a(?,t), which  minimizes t h e   i n t e g r a l  

1 *(? 9 [C]? + u2>, 
2 o  

where [C] = [C]* i s  a given  posi t ive  def ini te   matr ix .  

From resu l t s   g iven   in   re fe rence  14, 5 i s  given by 

h 

6 = b . x  - + +  

h 

with  the  constant  n-vector 2 being  given by 

where t h e  symmetric pos i t i ve   de f in i t e   ma t r ix  [B] s a t i s f i e s  

[B] [A] + [A] * [B] - [B]d[B] = - [c] 

Stab i l i t y   p rope r t i e s  of l i nea r   con t ro l  system.- If a pos i t i ve   de f in i t e  
Liapunov funct ion V i s  defined by 

V = 2 [BIZ 

it has  the  negat ive  def ini te  time der ivat ive  given by 

t = 2 - ([B][.] + [A]* [B] - 2[Bjaa -9 [El])? = -(? [C]? + a2) 

from  which it follows (as i n  ref. 1 4 )  t h a t   t h e  system  (eq. ( 3 )  ) with  control Q 
i s  exponentially  asymptotically  stable.  

h 

Consider  the  following  question: How could  the  gain  vector  2 be  varied 
without   disrupt ing  the  s tabi l i ty   of   the   l inear   control   system? Estimates of 
the   var ia t ion   can   be   ca lcu la ted  by s e t t i n g  

U =  b + A b  * X  
(1 -+) + 

I 



calculat ing  the  t ime  der ivat ive  of  V, which leads t o  

and  determining  conditions on such t h a t  $ < 0. 

The approach  taken  herein i s  to   consider   the  fol lowing two cases: (1) Ab 
3 

h h 

colinear  with 2 and (2 )  L?b' not  colinear  with 3. 
Case (1): If ab' i s  colinear  with 2, l e t  

h 

h 

i s =  e3 
where e i s  a scalar  parameter. Then equation (11) can  be  rewritten as 

from  which it i s  immediately  obvious t h a t  < 0 f o r  all 0 2 0.  Furthermore, 
it can  be shown t h a t  3 < 0 i f  

where p1 > 0 i s  the  smallest   eigenvalue of [C]. 

Case (2) :  If Ab i s  not  colinear  with b, it can  be shown that (given by 
eq. (11)) w i l l  be  negative i f  

"--f 1 

where the middle  expression  defines p.  

This result has   the   geometr ica l   in te rpre ta t ion   represented   in   f igure  1. 
Inequal i ty  (15) means t h a t   t h e r e  i s  a neighborhood of radius  p surrounding 
the  point   def ined by the   vec to r  b and every  gain  vector  definimg a p o i n t   i n  
t h i s  neighborhood i s  a s tab le   ga in   vec tor   for   the   l inear   cont ro l   sys tem.   In  
figure 1 t h e  neighborhood i s  represented by t h e   i n t e r i o r  of t he   c i r c l e   w i th  
radius  p and center  a t  the  point   def ined by vector  6'. This  neighborhood i s  

denoted  by Np($). 

1 

h 

It i s  in t e re s t ing   t o   no te   t ha t   t he   e s t ima te  on the lower bound of 0 is  
i n   p e r f e c t  agreement with inequal i ty  (15). This  agreement  can be seen as 

b 



h /  

Figure 1.- Geometrical   representation of s table   gain  region.  

follows.  In  equation  (12)  replace by the  lower bound es t imate   g iven   in  
inequal i ty  (14) t o   g e t  

A 

which says   tha t  i s  i n   t h e   o p p o s i t e   d i r e c t i o n  of b and  has  magnitude p .  
From t h e  geometry  of f i gu re  1 it i s  c l e a r   t h a t   t h e  estimates agree. 

4 

These proper t ies  of t he   l i nea r   con t ro l  l a w  having  been  noted,  attention 
i s  now turned  to  the  nonlinear  (bang-bang)  case.  

A bang-bang cont ro l  l a w . -  If the  switching  function a(ST),t) i n  equa- 

t i o n  (2 )  i s  given by b . 2, u can be wr i t t en  as 

u = s g n b  . 21 = 5 . 2  

h 

where u i s  understood t o  be  zero when $ - r;' = 0. Then i f  equation (17) i s  
used as t he   con t ro l  l a w  i n  system (l), equation (1) can be rewr i t ten  as 



It i s  well-known ( s e e   r e f .  13) t h a t   t h i s   c o n t r o l  l a w  leads   to   endpoin ts ;   tha t  

is, it i s  impossible t o   u s e  2 - TE' as the  switching  funct ion (where rs' i s  a 
constant  n-vector)  without  having a r e g i o n   i n  which the   cont ro l  w i l l  begin t o  

c h a t t e r  i f  t h e   t r a j e c t o r y   ( s o l u t i o n  of  eq. (18)) h i t s   the   hyperp lane  b 2 = 0 
with d # 0. This   face t   o f   the  problem w i l l  be t r e a t e d  after considering  the 
s t a b i l i t y  of t h e  system  (eq. (18)). 

A 

A + 

The s t a b i l i t y  of t h e  system  described by equation (18) is  readi ly  examined 
by defining a scalar  parameter 8 such t h a t  

Then, with a s t ra ightforward  subst i tut ion,   equat ion (18) can  be  rewritten as 

2 =  [A]5?+2[?+82] 2 ( 2 0 )  

which shows t h a t   t h i s  bang-bang control  l a w  can  be  regarded as a l i nea r   con t ro l  
l a w  with a co l inear   var ia t ion  of t he   ga in   vec to r ,   t ha t  is, 

Since it i s  known ( f rom  the   s t ab i l i t y   p rope r t i e s  of t he   l i nea r   sys t em)   t ha t   t he  

system i s  s t a b l e   f o r  8 > '" equation (19) can  be  solved  for 0 and the  

2 II3II" 
resul t   used  in   the  lef t -hand  term  of   inequal i ty  (14)  t o  de te rmine   s tab i l i ty  
conditions.   This  procedure  leads  to 

- CL, 

o r  

as a s u f f i c i e n t   c o n d i t i o n   f o r   s t a b i l i t y .  It i s  c l e a r   t h a t   i n e q u a l i t y  (23) must 
hold i f  the  r ight-hand  s ide i s  negative; however, t h i s  i s  t rue   on ly  i f  t h e  sys- 
tem i s  asymptotically stable without  control.  To prove this  statement,   proceed 
as follows: Suppose the  r ight-hand  s ide  of   inequal i ty  (23) i s  negative. Then 

8 



which  can  be  rewritten as 

From the  geogetry  of   f igure (1) it i s  easy t o  see tha t   i nequa l i ty  (25) holds 
only if .Np(?) contains   the  or igin,  which i n   t u r n  i s  t rue  only i f  t h e  uncon- 
t r o l l e d  system i s  asymptot ical ly   s table .   This   re la t ion  fol lows from t h e   f a c t  

t ha t   t he   u se  of  any b" i n  ITp(?) makes t h e   l i n e a r  system  asymptotically  stable; 

therefore ,  i f  3 is  i n  N p ( 2 ) ,  t h e  system must be  asymptotically  stable  without 
control .  

Suppose that   the   r ight-hand  s ide  of   inequal i ty  ( 2 3 )  i s  pos i t ive   bu t   c lear ly  
less   than   un i ty .  The inequal i ty   then would hold i f  

from  which a su f f i c i en t   cond i t ion   fo r  V < 0 i s  

The s igni f icance   o f   th i s   inequal i ty  i s  explained by consider ing  the  fact  

"$ 
h 

b = - [B] 2 

which i s  a s table   gain  vector   for   the  l inear   control   system.  Therefore ,   the  

minimum 11  21 1 of t h i s  form may be  regarded as a measure  of t h e  minimum  amount 
of  "muscle" requi red   to   s tab i l ize   the   l inear   cont ro l   sys tem.  If M i s  defined 

as t h e  minimum ) I  3 ( 1  considering all poss ib le   pos i t ive   mat r ices   in  equa- 
t i o n  ( b ) ,  t h a t  is, 

then   inequal i ty  (27 )  can  be  rewritten as 

9 



The following  conclusions  can  then  be drawn r e l a t i v e   t o   t h e   s t a b i l i t y   o f   t h e  
bang-bang control  system  (eq. (18)) pr ior   to   an   endpoin t .  

(1) If the  uncontrolled  system i s  exponentially  asymptotically  stable 
( M  = 0),  the  controlled  system will be  asymptotically  stable.  

(2)  If the  uncontrolled  system i s  neu t r a l ly   s t ab le   i n   t he   s ense   t ha t  
M > 0 may b e   a r b i t r a r i l y  small (from  inequality ( 3 O ) ) ,  the   control led system 
w i l l  be   asymptot ical ly   s table   for  a l l  f i n i t e  112 11. 

( 3 )  If the  uncontrolled  system i s  uns tab le   in   the   sense   tha t  M > 0 must 

be  f ini te ,   the   control led  system w i l l  be s t a b l e   i f  I( d 1 1  < M - l .  

From physical  considerations it i s  c l e a r   t h a t  when the  uncontrolled system 
i s  unstable ( M  > 0)  and t h e  muscle i s  l imi ted  (as i n   t h e   c a s e  of bang-bang con- 
t r o l ) ,   t h e  system must remain i n  a neighborhood  of  the  origin  (estimated by 
inequal i ty  ( 3 0 ) )  where t h e  muscle  can o v e r r i d e   t h e   i n s t a b i l i t i e s  of t h e  system. 

The endpoint  problem.- In   re fe rence  13 it i s  proved tha t   eve ry   s t a t e  
vector  x which s a t i s f i e s  -+ 

+ +  A 

b . x = O  

and 
- 

i s  an  endpoint.  That i s  t o  say, t h a t  when the   t r a j ec to ry   ( so lu t ion  of eq. (18)) 
h i t s   the   hyperp lane  2 2 = 0 a t  one  of these   po in ts ,   the   s ta te   vec tor  x 

gets   t rapped  in   the  hyperplane and the  control   begins   to   chat ter   s ince b - x 
i s  the  control  switching  function. 

h -+ 
* - + +  

Since  the problem l i e s  i n   t h e   f a c t   t h a t  x cannot get   out   of   the  hy-per- -+ 

plane (2 x = 0), it seemed reasonable t o  ask: Can t h i s  problem  be a l l e v i a t e d  
+ 

by moving the  hyperplane away from t h e  state vector? If it i s  assumed t h a t   t h e  
answer t o   t h i s   q u e s t i o n  i s  yes,   the groundwork has  been la id   for   the   fo l lowing  
heuris t ic   synthesis   technique.  

Heuris t ic   synthesis   technique.-   After   the   s tabi l i ty   condi t ions have  been 
invest igated and a so lu t ion   to   the   endpoin t  problem assumed, t h e   h e u r i s t i c  syn- 
thesis   technique  consis ts  of the  following  steps:  

Given t h e  system 

10 
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sub jec t   t o   t he   cons t r a in t s  [u I 1 and 

det(2, [A]& [A] %, . . . [AIn-’2) # 0 

se l ec t  a b of   the form - [B]g such t h a t  all the   roo ts   o f  3 

A* 

[A] + % - .[I]) = 0 

have  negative  real   parts.   Let g(t) (o f   t he  form -[BIZ f o r  a l l  t 2 0 )  be 
given by 

Z(t) = r;’ + Z(t) 
n 

h 

(where b i s  a constant  vector and 1 1  Ab(t)  1 1  i s  s u f f i c i e n t l y  s m a l l  f o r  a l l  
t 2 0). Then a s t ab le  bang-bang control  l a w  i s  obtained by s e t t i n g  

-+ 

u<g;tt ,  = s g n B ( t )  - FJ 
To generate some f e e l i n g   f o r  i t s  u t i l i t y ,   t h i s   syn thes i s   t echn ique  w a s  

applied  in  an  analog  simulation  of  an  ideaiized  att i tude  control  system  for 
spinning  space  vehicles. 

APPLICATION OF SYNTEESIS TECHNIQUE TO ATTITUDE CONTROL 

OF SPINNING SPACE V E H I C I X  

Description of Control System 

Figure 2 represents  the  system components. The X,Y,Z axes   are   pr incipal  
vehicle  axes.  The vehicle  spins  about  the X-axis to   provide  basic   gyroscopic  
s t a b i l i t y .  The control  system  consists  of a f r e e  gyro,  one rate   gyro,   p i tch 
j e t s ,  and a computer. The free  gyro i s  set so t h a t  i t s  spin  vector  and t o t a l  
angular momentum vector   are   coincident   with some re fe rence   d i r ec t ion   i n   i ne r t i a l  
space.  Since  the  gyro i s  free (fr ic t ionless   gimbal   bear ings) ,  it w i l l  maintain 
t h i s   a t t i t u d e .  If t h e  X - a x i s  is  p a r a l l e l   t o   t h e   s p i n   v e c t o r  of t h e  free gyro, 
and if at t h e  same time q = r = 0 ( p i t c h  and yaw ra t e s   a r e   ze ro )  and no torques 
are ac t ing  on the  vehicle ,   the   vehicle  all have the   des i r ed   r e fe rence   a t t i t ude  
and tend   to   main ta in  it. If t h e  X - a x i s  is n o t   p a r a l l e l   t o   t h e   f r e e   g y r o   s p i n  
vector,  the  misalinement w i l l  be  sensed  by a pickoff  device  sensing  the  gimbal 
angle p which i s  d e t a i l e d   i n   f i g u r e  3 .  Thus t h e  free gyro and t h e  rate gyro, 
which senses q, supply  the computer  with the  information needed t o  determine 
control   torques.  The control   torques  are   suppl ied by t h e   p i t c h  jets i n  accord- 
ance  with  the  output  of  the computer. A block diagram of  the  system i s  given 
i n  figure 4. 
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G i m b a l   a n g l e s  
X Y 

2' GC " -  g y r o  1 I 
Figure 3.-  Detail o f  gimbal 

angles  a and+ B .  The 
un i t   vec to r  e has   the 
d i r e c t i o n   o f   t h e  free gyro 
sp in   ax i s   w i th   o r i en ta t ion  

Figure 2 . -  I l lus t ra t ion   o f   cont ro l   sys tem  for   sp inning   space  given  by a and p, meas- 
vehic le .  X, Y, and Z ind ica te   the   p r inc ipa l   vehic le -  u r e d   r e l a t i v e   t o   t h e  X-, 
f ixed   axes .  Y-, and  Z-axis  system. 

Figure 4. -  Block  diagram  of  closed-loop 
bang-bang control  system. 

Dynamic and  Control Logic Equations 

The equations which  were used t o   d e s c r i b e   t h i s  system a r e  developed i n   t h e  
appendix. The result ing  equations and cont ro l   re la t ions  i n  e x p l i c i t  form a r e  
as follows: 

= POP - 9 

P = -poa - r 

( 3 3 )  

12 



The frequency 20, used i n  s(t) was chosen a r b i t r a r i l y ,  and the   r e su l t s   o f  
the  analog  study  verified  the  fact   that   system  response i s  n o t   c r i t i c a l l y  depend- 
ent  upon th i s   quan t i ty .  

Analog Simulation  of  Control System 

A n  analog computer simulation  of a representat ive system w a s  mechanized  by 
using  equations ( 3 3 ) ,  (34),  ( 3 5 ) ,  and the  following  values: 

I x / ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o . 2  
po , rad ians /sec  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
a, r a d i a n s / s e c .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
J, radians/sec/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.0 

Values f o r  bl and c4 were  determined  simply  by  varying  these  gains  until 
t h e  system  response seemed t o  be  the  best   obtainable .  The simulation w a s  then 
used t o  study  system  performance i n  a variety  of  circumstances.  Consideration 
was given t o   t h e   e f f e c t s  of var ied   in i t ia l   condi t ions ,  magnitude of control tor- 
que, presence  of  external  torques,   variation  of  spin  rate,  and  combinations  of 
these.  

h 

RESULTS AND DISCUSSION 

The analog  simulation  of  the  spinning body control  system w a s  used to   eva l -  
uate  system  performance f o r  a var ie ty   of   condi t ions  of   interest .  The results of 
t h i s   i nves t iga t ion   a r e  summarized by  considering  f igures 5 t o  11. 

The first  objective  of  the  analog  study w a s  t o  determine  the  best  values 
fo r   t he   ga ins  bl  and b4 and t o  check the  sharpness   of   the   s tabi l i ty  l i m i t  

h h 

.... 



given   in   the   appendix  bllxpo). It was found tha t   fo r   h igh   va lues  of 
. .  I 
ICl 1, l i m i t  cycle   diff i .cul t ies   exis t .   Actual ly ,   these were  not  true l i m i t  
cycles,  but as t h e  system  approached  the  origin, damping became ve ry   l i gh t .  A s  
the  value  of I $, I w a s  decreased b4 being  held  constant   toward  the  s tabi l i ty  

limit, t h e   o v e r a l l  damping decreased  but damping c l o s e   t o   t h e   o r i g i n  improved. 
The system  remained s t ab le   ac ross   t he  limit b u t   i n s t a b i l i t y  w a s  encountered when 

t h e  l i m i t  was gross ly   v io la ted .  A s  expected,  higher  values of t h e   r a t i o  lg4Pll  

(" ) 

I.. 

gain) .  

r a t i o .  

l i m i t  . 
and $4 

produced b e t t e r  damping of the  angles  [b4 i s  essent ia l ly   the   angular   e r ror  
However, t h e  rate damping  became re la t ive ly   poor   for   h igh   va lues   o f   th i s  

The inequal i ty  0 < b4 < - bllXPo proved t o  be a conserva t ive   s tab i l i ty  
T 
L 

Considera t ion   of   the   da ta   l ed   to   the   se lec t ion   of   the   va lues  bl = -1.5 
= 2.5 fo r   fu r the r   s tudy .  It w a s  f e l t   t h a t   t h e s e   v a l u e s  gave the   bes t  

h 

compromise in   eva lua t ing  a l l  t he   f ac to r s . .  

The e f f e c t  of  control  torque  magnitude was inves t iga ted  and, as expected, 
t h e  system  responded f a s t e r  as control   torque was increased. The value J = 1.0 
was s e l e c t e d   a r b i t r a r i l y   f o r   f u r t h e r   s t u d y .  With these  parameter  values,   f ig- 
ure  5 shows typical   system  responses   to   arbi t rary  ini t ia l   condi t ions.  Note t h a t  
t he   r e sponse   t o  all conditions i s  smooth and t h e  damping strong,  with no l i m i t  
c y c l e   d i f f i c u l t i e s .  

I n   o r d e r   t o   e v a l u a t e   t h e   u t i l i t y  of t h e  system f o r   n u l l i n g   t h e   e f f e c t s  of 
external  torques  such as those due t o   t h r u s t  misalinement,  constant  torques as 
l a rge  as 75 percent   of   the   avai lable   control   torque were simulated.  Since  the 
control  w a s  asymmetric (p i tch   to rques   on ly) ,   to rques   e f fec t ive   in   the   p i tch  
plane, i n   t h e  yaw plane,  and  inclined 450 to   both  planes were t e s t e d .  Time 
h i s t o r i e s   f o r   t h e s e   t h r e e   c o n d i t i o n s  are shown i n   f i g u r e  6. All these  responses 
were f o r  an  external  torque  magnitude  equal t o  75 percent of the   control   torque.  
The damping for   these   cases  w a s  no t   subs tan t ia l ly  changed  from t h e  nominal  case 
response. 

An appa ren t   d i f f i cu l ty   t ha t  might  be  encountered by t h i s  system i s  a 
dependence  of  performance  on the  frequency a t  which the  switching  hyperplane 
was osc i l l a t ed .  To i n v e s t i g a t e   t h i s   p o s s i b i l i t y ,   t h e   s p i n   r a t e  of the  s imulated 
vehicle  w a s  increased as much as 50 percent and decreased as much as 50 percent 
while  the  switching  hyperplane was osci l la ted  with  the  or iginal   f requency.  Time 
h i s t o r i e s  of t h e  extreme  cases (k5O percent   var ia t ion   in   vehic le   sp in   ra te )   a re  
shown i n   f i g u r e s  7 and 8. Figures 7 and 8 show the  high  (po = 37.5 radians/sec) 
and  low po = 12.5 radians/sec)   spin rates, respect ively.  It i s  apparent  that  
the  effect   of   off-nominal   vehicle   spin  ra te  i s  not   s ign i f icant ly   de le te r ious  
t o  system  performance. 

( 
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(a) Initid angle B = 0.2 radian. 

F igure  5.- Time history of nominal  system  response f o r  bl = -1.5 and b4 = 2.5 
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(b) Initial angular r a t e  q = 1.0 radian/sec.  

Figure 5 .  - Continued. 
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( c )  Combined i n i t i a l   c o n d i t i o n s  r = 0.5 radian/sec  and a = 0.1 radian. 

Figure 5.- Concluded. 



P i t c h  r a t e ,  
r a d i a n s / s e c  

( a )  Initial angular r a t e  q = 1.0 radian/sec and externa l   p i tch ing  moment e q u a l   t o  0.7551. 

Figure 6.- Time h i s t o r y  of nominal  system  response. 
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(b) Initial angle P = 0.2 radian and ex terna l  yawing moment e q u a l   t o  0.7551. 

Figure 6.- Continued. 
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( c )  Initial angle fi = 0.2 radian and externa l  moment equal t o  O.AJ1 with  equal  pitch  and yaw 
components . 

Figure 6.- Concluded. 
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Figure 7.- Time history of system with veh ic l e   sp in   r a t e   i nc reased  50 percent,  nominal  feedback 
frequency,  and initial angle B = 0.2 rad ian .  



-1 .  2 5 L  
1 . 2 5 ~  

Figure 8.- Time h i s t o r y  of system  with  vehicle   spin rate reduced 50 percent,  nominal  feedback 
frequency,  and initial. angu la r   r a t e  q = 1.0 rarlian/sec. 

Finally,  a time  optimal  control  case was calculated on t h e   d i g i t a l  com- 
puter .  The nonoptimal  control  system was then  calculated from t h e  same i n i t i a l  

conditions. Time h i s t o r i e s  of ((2t) 1 1  comparing the  responses  of  the two 
systems  are shown i n   f i g u r e  11. Note that  the  nonoptimal  (but  closed  loop) 
l o g i c   y i e l d s  comparable damping, even  though t h e  number of switches was about 
four   t imes  that   of   the   opt imal   system  for  t h i s  set  of in i t ia l   condi t ions .   This  
comparison i s  intended t o  show t h a t   t h e  system  with  linear  switching i s  bas i ca l ly  , 
e f f i c i e n t ,  and it i s  a l ready   apparent   tha t   th i s   type   o f   log ic  i s  capable  of 
handling a v a r i e t y  of random inputs  and  off-nominal  system  characteristics. 

4 
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( a )  Initial angle p = 0.2 radian,   and  externdl   pi tching moment e q u a l   t o  0.7551.. 

Figure 9.- Time h i s t o r y  of system  with  vehicle   spin rate increased 50 percent, and nominal 
feedback  frequency. 
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(b) Initial angular r a t e  q = 1.0 radian/sec  and  external yawing moment e q u a l   t o  0.7551. 

Figure 9.- Concluded. 
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(a )  Combined initial conditions a = 0.1 radian, r = 0.5 radian/sec,   and  external   p i tching moment 
e q u a l   t o  0.75J1. 

Figure 10.- Time h i s t o r y  of system  with  vehicle   spin  ra te   reduced 50 percent,  and nominal 
feedback  frequency. 

i 
25 



Pitch  rate, 
rad i ans/sec 

-1.25 L 
1 . 2 5 r  

-1 .25L 
6.25 

A l p h a  gimbal 
rate, 0 

radians/sec 
-6 .25 

6.25 - 

Beta  gimbal 
rate, 

radians/sec 
-6.25 - 

- 2 . 5  L 
I I I I I 

0 1 2 3 4 5 
I 

Tirne,sec 
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Figure 10. - Concluded. 
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2. 

1. 

1. 

Tirne ,sec  

Figure 11.- Time h i s t o r i e s  of 1 1  ?(t) 1 1  comparing the  response of the  system  with  closed-loop 
l inear  switching  with  the  response of the  t ime  optimal  system f o r  same i n i t i a l   c o n d i t i o n s .  
s, = 0.734 radian/sec; ro = -1.02 radians/sec; % = 0.248 radian;  and Po = 0.117 radian. 

CO"ICLUD1NG REMEw(S 

The i n t e n t  of th i s   paper   has   been   to   p resent  and discuss  a technique  for 
the   synthes is  of  a p a r t i c u l a r   c l a s s  of bang-bang control  systems. This tech- 
nique, which uses  l inear  switching w i t h  time-dependent  gains, w a s  applied t o  an 
example  problem  and t h e   s t a b i l i t y  and f l e x i b i l i t y  of the  control  under a va r i e ty  
of conditions  has  been  demonstrated. 

This  control-synthesis  technique  appears t o  be   appl icable   to  a wide  range 
of control  problems  and  offers a method for   a l lev ia t ing   the   endpoin t  problem 
which i s  common to  l inear  switching  with  constant  gains.   Future  developments 
of this  technique  should  include  generalization  to  systems  with more than one 
control  and considerations  of  switching  delay times, hysteresis ,  and t ranspor t  

t lags. 

* 
Langley  Research  Center, 

National  Aeronautics  and  Space  Administration, 
Langley  Station, Hampton, Va. ,  December 5 ,  1963. 



APPENDIX 

DYNAMIC AND CONTROL LOGIC EQUATIONS 

Vehicle  Equations 

The equations which  were used t o   d e s c r i b e   t h e  dynamics  of the   vehic le  were % 

f i l e r ' s  dynamic equations.   (See  ref.  15.) The following  assumptions  were 
employed i n   t h e   d e s c r i p t i o n :  

(1) No coupling  between  the  force  and moment equations 

(2 )  Symmetric i n e r t i a   d i s t r i b u t i o n ,   t h a t  is, I y  = I z  = I 

(3) No X-component of  torque so  t h a t  p = po > 0 

( 4 )  The  moments o f   i n e r t i a   s a t i s f y   t h e   i n e q u a l i t y  I x  < I. 

With these  assumptions,  the  equations  were  written as 

6 - w r  = J u ( t )  + - MY 
I 

*Z i . + L u q = -  
I 

where 

Lu = (1 - 

l u ( t )  I 1 

and IJ i s  t h e  m a x i m u m  avai lable   control   torque.  

(A2) 

General G i m b a l  Angle Equations 

In   de r iv ing   t he   equa t ions   fo r  a and p, the  following  assumptions  were 
made : 

(1) No torques  act  on the   f r ee   gy ro  r 

(2 )  The spin axis and t o t a l  angular momentum vector   of   the   f ree   gyro  are  
coincident   and  dined  with a re ference   d i rec t ion   in   iner t ia l   space .  

With these  assiwptions, a uni t   vec tor  2 i n   t h e   d i r e c t i o n   o f   t h e   f r e e   g y r o   s p i n  
axis satisfies the  fol lowing  vector   different ia l   equat ion  wri t ten  in   the  pr inci-  
pa l   veh ic l e  axis system: 
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-(a + me = o d 
d t  

++ 

Ji where 

b and  from f igure  3 it i s  eas i ly   seen   tha t  
4 e = cos a cos p? + s i n  p? - s i n  a cos prr' 

Linearized Gimbal Angle  Equations 

The scalar  equations  corresponding  to  equation (A3) were l inear ized  by 
making the  following  assumptions: 

cos a = 1 

s i n  p = p 

( 2 )  The products a&, p i ,  qa, and r p  a r e  small quant i t ies  and may be 
neglected. Under these  assumptions,   the   different ia l   equat ions  for  a and p 
a r e  : 

State  Vector Form of  Equations 

In  order   to   express   equat ions ( A l ) ,  (a), (Ag), and ( A l O )  i n   s t a t e   v e c t o r  
f om,  define 

I 



[A. = 

- 
O L D 0 0  

4 0  0 0 

- 

-1 0 0 Po 

0 -1 -Po 0 - - 

Then for % = MZ = 0, the  equat ions can be  writ ten as 

2 = [A]? + uz 

Note tha t   t he   con t ro l l ab i l i t y   cond i t ion  i s  s a t i s f i e d   s i n c e  

= J 4 up0(cu + po)2 # 0 

Control  Logic  Equations 

For t h i s  problem, the   cont ro l  l a w  has   the  form 

u(;;';t) = s g n E l ( t ) q  + b 2 ( t ) r  + b 3 ( t ) u  + b h ( t ) g  (A16) 

where 2 has  the form - [B] 2 and a l l  the  roots  of 

det  ([A] + ;It;." - ALII) = 0 

have  negative real p a r t s .  If g i s  assumed t o  have t h e  form 

"f 
b =  

30 
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J equation ( A l 7 )  can  be  writ ten as 

Application  of  the.   Routh-Hurwitz  stabil i ty  cri terion  (see,   for example, ref. 16) 
4 to   equa t ion  (Alg) shows t h a t   t h e   r o o t s  w i l l  have  negative real p a r t s  i f  

If g(t) has   the  form 

I 

+ 
b ( t )  = 

l o  

it i s  easy t o   f i n d   v a l u e s   f o r   t h e   c o n s t a n t s  bl and  such that   inequal-  

i t y  (A20) holds,  and i f  any  value  of t b 0 i s  given,   there   exis ts  a 
B = B* > 0 such t h a t  2 = -Bg. 

h 

4 

k 
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